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) ABSTRACT

: . This report examines the problem of adaptively tracking a
maneuvering submarine in two dimensional space utilizing passive time
delay and Doppler frequency measurements of unknown or randomly

varying center frequencies. The target is free to maneuver in '

5O okt 45—ty

velocity and depth with tracking being done in the vertical plane.
It is pointed out how to incorporate bearing measurements into the
present polar model to achieve a three dimensional target tracking

capability.
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Chapter 1

1.1 Introduction

During the past several years much effort has been spent in the
development of sophisticated digital filtering algorithms for tracking
maneuvering targets. A common method has been to model the target
dynamics in a rectangular coordinate system which resultsvin a linear
set of state equations, but forces the measurements to be nonlinear
functions of the state variables. With this model an extended Kalman
filtering algorithm is frequently used both to provide current state
variable estimates and, by a one-~step prediction process, to linearize
the next measurement vector. This method works moderately well until
the target makes an abrupt change in its trajectory in response to
pilot or missile-guidance program commands. In this situation the
velocity and position estimates can, and often do, diverge from the
true unknown values. The inherent problems of this approach can lead
to large bias errors and sometimes complete filter divergence,

Earlier work on the maneuvering target tracking problem includes

Jazwinski's limited memory filt;ring [1], in which the filter gains

are prevented from decaying to zero. Another technique, described
by Thorp [2], involves switching between two Kalman filters in res-
ponse to a detected maneuver., A third approach, due to Singer [3],
models the target trajectory as a response of the target model to

a time-correlated random aéceleration. With this method additional




state variables are used to generate the correlated forcing func-
tions which, in turn, increase the dimension of the Kalman filtering
algorithm. In this manner the technique provides the filter with
statistical information concerning target maneuvers based on an as-
sumed range of possible aaelerations. Singer's method was subsequen-
tly extended by many others.

Parallel to the effort was the method of modeling major changes
in target trajectories by a semi-Markov process. An application of

this approach to tracking maneuvering targets in two-dimensions by

Moose [4] was successfully extended by Gholson and Moose [5] to

three~-dimensional tracking.,

The general approach which uses the "adaptive semi-Markov man-
euver model"” of -[4] and [5] implies a discretization of possible
vehicle accelerations or velocities. The estimation algorithm then
views the maneuvering vehicle as if it is responding to commands which
are modeled by a semi-Markov process, i.e., a random process with a
finite number of ''states" (commands) which are selected accordiag to
the transition probabilities of a Markov process. A semi-Markov pro-
cess differs from a Markov process in that the duration of time in
one state prior to switching to ancther state is itself a random var-
ble [6]. Incorporating the semi-Markov concept into a Bayesian esti-
mator of [4] and [5]. This estimation algorithm provides a substan-
tial improvement in filter stability, which means that large bias
errors are prevented from being built up due to unmodeled target accel-
erations. An important aspect of this adaptive estimation algorithm
is its elimination of a "growing memory" which is prevalent in many

adaptive filters.




i e e T D

El
3
4
§
q

.

e — —

oy .3 Ay s rcn, it B m o5 s L

DA bt MiAa0 v — mesatnmens s o S m st st G S

1.2 Target Modeling

With the brief history of the maneuvering target tracking pro-
blem presented in the previous section, we see a general progression
in the sophistication of tracking filter design stemming primarily
from the method in which the unknown target accelerations are modeled.
This trend is graphically outlined in Figure 1.1

Initially, target maneuvers were modeled as the response to
uncorrelated, zero-mean variations about a nonaccelerating target,
shown in Figure 1(A). As a result, the estimation algorithm could
follow only those maneuvers which were comparable with the input noise
level. Furthermore, the filtering results during nonmaneuvering sit-
uations were seriously degraded due to the uncorrelated input noise.
As shown in Figure 1(B), Singer [3] attempted to model large=-scale
maneuvers by assuming a time-correlated input process and incorpora-
ting the statistics into the subsequent filter design. 1In Figure 1(C)
large-scale target maneuvers were modeled as a stochastic process whose
mean~value switched randomly from among a finite set of predetermined
values., The adaptive estimation algorithm mentioned in the previous
section could then be used to track the maneuvering target. This
method was seriously restricted, however, by the requirement of a
large number of preselected mean vaiues in order to ensure convergence
of the estimation process. In thisreport we show that by combining
the concepts illustrated in Figure 1(B) and Figure 1(C) the number of
mean values required to prevent filter divergence is greatly reduced.
This combination is illustrated in Figure 1(D). The primary benefit
of this approach is the large saving in computational effort. An

additional benefit, at least from a subjective viewpoint, is that the
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time-correlated, randomly switching,mean-forcing function more ade~

quately models real-world target maneuvers.

The basic target modeling ideas are shown in Figure1.2, The tar-
get trajectory is generated by the random selection of an input time-
correlated Gaussian process whose mean value Uy is applied to the tar-
get plant dynamics for a random duration of time. This input distur-
bance process lasts until a new input Uy is randomly chosen from among
a finite set of »n possible inputs. With this model as a background
and using an appropriate choice of state variable equations to repre-
sent target dynamics, either submarine or aircraft, it is possible
to develop an "optimal" (in the minimum mean-square error sense)
tracking filter that adaptively learns, then gquickly adjusts itself

for each major alteration of target trajectory.

1.3 Incorporation of Singer Process into the Target Dynamics

In incorporating the correlated process, the linearized spheri-~
cal model of [5] is preserved. To this end, consider a target whose
motion in rectangular coordinates is described by

X =-ax +u_+w'
X X
(1.3.1)

! :-aw'+w
X X X

where
a is a drag coefficient
uy is the deterministic input in the x direction randomly
chosen from a set of N possible inputs.
w; is the Singer correlated acceleration process acting
in the x direction with a time constant L 1l/a. This

process used throughout the report is shown modeled in 5

Figure 1.3,
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v is a white Gaussian random process acting in the x direction

A similar set of equations exists for the y and z directions.

Defining

the following continuous time state variable model is obtained for

1 ‘ Equation (1.3.1)

1

i r. 7 r 9 7 o =

{ Xy 0 1 0 X 0 0

‘f X, 0 -a 1 X, +| 1 u + 0 v (1.3.2)

E: X4 0 0 -a X4 0 1

:' . - - - - - -' . -

i Discretizing (1.3.2) in time yields

? F X T1 A B Xy rc 1 D

"i 4

i X | =10 E F X, 1A u o+ G v (1.3.3)

{ k k

[ X 0 0 e—aT X 0 J '
3 3 J

i - - L. J - - - -

! k+1 k

! |

i where i
A= -eT/a

| T

’ B=[1+ (ae *' - ae-aT) / (¢ - a)] / (ca)

(]
[]

(T - 1 + e_aT)/a2

o
[ ]

[T+ (aA - aJ)/ (e -~ a)]/(aa) ,
! E = e—aT 1

-aT

'2‘9 F-(e

- e-aT)/(a - a) .
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J=(1-e2Y,
A similar state variable model is assumed to exist for the y and z directions.

G= (J - A)/a - a)
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Chapter 2

UNDERWATER PASSIVE TRACKING. INTRODUCTION AND LINEARIZED POLAR MODEL
FOR THE MANEUVERING OBSERVER-SOURCE SCENARIO

2.1 Introduction

The tracking of air targets such as described in [7] is charac-
terized by high quality radar data providing good system observability
and high signal-to-noise ratio. In underwater passive submarine trac-
king on the other hand, the situation is characterized by meager data
which, when it is available, is almost always a nonlinear function of
the system state variables.

The particular problem which is addressed in this chapter and
in the remainder of this report is how to track the target submarine
(Source) from the moving Observer submarine using sonar signals eman-
ating from the Source. Because the Observer does not use an active
sonar but rather listens to sound waves emanating from the Source,
this method of tracking has acquired the name passive tracking.

It is pointed out in [7] in conjunction with air targets that in
order to successfully track a maneuvering target in three dimensiors
the dynamics must be realistically modeled in the chosen coordinate
system and secondly that an adaptive feature must be designed to pre-
vent filter divergence as the target executes evasive maneuvers. These

two requirements are of equal importance in the underwater passive trac-

king domain.
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The availability of air target radar data in spherical coordi-
nates suggests that coordinate system as being the ''natural' one in
which to design a tracking filter. In the underwater case, the selec-
tion of a "matural" coordinate system based on the available data is a
much more obscure process. This is true because almost all the avail-
able data are nonlinear functions of the state variables regardless of
any coordinate system choesn. It is a major goal of this report to
address this problem in detail. It will be shown that for a certain
subset of the observables, a 'matural' coordinate system does indeed
exist. This discovery will then be exploited to design a ''pseudo-
linear'" filter to process this subset of the observables using only
linear filtering techniques.

v
3.

2.2 State of the Art
Thg broblem of passively tracking underwater targets has re-
ceived very little attention in the literature. What little exposure
has occurred has tended to concenetrate on the bearings-only approach.
In this method the Observer monitors his bearing to the Source, over
a period of time. Usually the Observer must execute a known maneu-
ver to remove the ambiguity that sometimes exists with this type of
tracking algorithm.
In a very interesting paper, Hassab [8] passively tracks the
maneuvering Source in three dimensions by exploiting the combination of

bearing measurements and sonar time delays between the direct, bottom

reflected and surface reflected sound waves emitted by a Source. Since




these time delays and bearing measurements are nonlinear functions of
the state variables in the rectangular coordinate svstem used. The
Extended Kalman Filter is employed to provide optimal estimates of

the Source range, bearing, velocity and depth with respect to the moving

‘Observer. The state vector consists of three rectangular position com-

ponents (Rx’ R, Rz) and three rectangular velocity components (Vx, v,

y y

Vz)' A constant velocity model is used for the Source dynamics with
an additive white Gaussian noise perturbation. Because of the choice
of a rectangular coordinate system, the processing of the bearing mea-
surements becomes coupled to the processing of the time delay measure-
ments resulting in a 3 x 6 linearized measurement matrix having the

following generic form:

3 38
3R 0 3x © 0 0
X y
37 37 3T
1
d(k+l) = aRl 0 SEL 0 3—3 0
* 7 z (2.2.1)
3T 3t 3T
2 2 2
aR 0 3R 0 3R 0
Lx ¥ :

where 8, Tl, TZ are the bearing and two sonar time delays, respectivelv.
In [9] a relative rectangular coordinate system is again chosen

to model the Observer-Source scenario. The measurements used here are

bearing and direct/surface reflected sonar time delays. Since these

make the system unobservable, the Source is assumed to be at the same

depth as the Observer. Again, the measurements are nonlinear

10
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functions of the state variables with coupling occurring between the

processing of bearing and time delay measurements.

One of the factors which makes rectangular coordinates appear so
attractive for passive tracking is that compensation for Observer motion
in this coordinate system is relatively simple, involving only a linear
subtraction. For example, if

Vx = x component of Source velocity with respect to
s the ocean floor

Vx = x component of Observer velocity with respect to
o the ocean floor

Rx = relative distance between the x coordinates of the
Source and Observer

then, assuming a constant velocity model for the Source [8]
Rx(k+l) 1 T Rx(k) T

= - V(%) (2.2.2)
V (k+l) 0 1 v (k) 0 °

X X

S s

Thus rectangular coordinates offer a very convenient method of
compensation for Observer motion.

However, rectangular coordinates are a very poor coordinate sys-
tem in which to filter when one considers the types of measurement data
other than sonar time delays available for passive tracking. For ex-~
ample, Source bearing with respect to the Observer is one of the most
consistently available measurements. Another commonly available mea-
surement data consists of Source line frequency spectra which are
amitred from various mechanical elements aboard the Source.

In filtering in relative rectangular coordinates (x, y, 2)

these types of measurement data are inherently nonlinear functions of




the Source state variables. For example, bearing involves the arc
tangent function of Source x and y relative coordinates. The line fre~
quency spectra, when used in Doppler tracking with an unknown center fre-
quency fo’ involve the product of state variables and again a nonlinear
estimation problem must be solved.

In an attempt to find a more suitable coordinate system for
passive tracking, Tenney et al. [10] propose a relative coordinate sys-
tem based on the closest point of approach (CPA) for use with Doppler
tracking. This approach requires that

1. the measurement matrix be relinearized at
each iteration;

2. the Source trajectory be of the "crossing"
variety to produce a closest point of
approach:

3. the center frequency of the transmitted
signal be known and constant.

The presence of bearing observations suggests either polar or
spherical coordinates as a more suitable system in which to filter.
This is true in light of earlier work where a linearized spherical fil-
ter was used to process spherical measurement data using linear filtering
theory while permitting decoupling of each coordinate direction. Thus,
for example, the bearing measurements available to the Observer could
be decoupled from the time delay measurements and processed independ-
ently in either of these two coordinate systems. While the sonar time
delay measurements would continue to be coupled together and necessitate
a nonlinear filter such as the Extended Kalman filter, the decoupling
of the bearing tracker from the time delays would represent a signi-
ficant reduction in the complexity of the nonlinear filter. For
example, if filtering in polar coordinates is undertaken, then because

of the decoupling of the bearing channel the time delay processing

12
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would involve linearizing the measurement matrix about only two state

variables rather than about three state variables as in Equation (1.2.1).

To distinguish between the merits of spherical and polar co-
ordinates, consider Figure 2.3.l1l. Assume that both the Observer and
Source depths remain unchanged; therefore iso = 0. If the Source radial
rate o is noo-zero them in spherical coordinates the elevation rate e
is also non-zero, even if o is some fixed value. In polar coordin-
ates, on the other hand, and with these same conditiomns, the Source ver-
tical race éso is, of course, zero. The implications of all this
are that in spherical coordinaces the generally non-zero elevation rate
requires a sophisticated modeling technique for the Source input
acting in the elevation direction. This cechnique would involve saveral
overlapping Gaussian curves and also an adaptive technique to prcvide a
weighted sum. Tt will be snown in Chapter 3 that with polar coordinates,
on the octher hand, the source Z direczion input can be modeled in a par-
ticularly simple manner using only a single Gaussian curve having a
mean value equal to zero.

It will also be shown later that polar coordinates Jossess ex-~

tremely attractive features for passive tracking using the Doppler

effect. For these reasons it is decided to undertake passive tracking
of a moving Source from a moving Observer in the polar coordinate sys-
tem.

Of course, while polar coordinates offer the advantages out-~
lined above, there is a concomitant penalty in that compensation for Ob-
server motion in this coordinate system is more difficult and complex

than for the rectangular case. To appreciate this point, consider the

13
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state model given by Equation (2.2.2). If one imagines a rectangular

coordinate system attached to and moving with the Observer, then the

_state model (2.2.2) provides estimates of the target state variables

with respect to this moving coordinate system. However, regardless of
the maneuvers executed by the Source and Observer, this coordinate sys-
tem clways translates parallel to itself.

Referring to Figure 2.3.1, consider a polar coordinate system
attached to and moving with the Observer. As the Observer and Source
maneuver with respect to each other the direction of che polar radius
vector p connecting the Observer to the Source changes its direction in
keeping with the changing relative positions. Therefore the polar co-
ordinate system attached to the Observer rotates in additionm to trans-
lating and it is the added complexity caused by this rotation that ren-
ders more difficult the task of formulating a state variable model in
polar coordinates which accurately compensates for Observer motion.

It is this problem which is solved in the next section.

2.3 Linearized Polar Model for the Dynamics of the Maneuvering
Observer-Source Scenario

Consider Figure 2.3.1 which shows the geometry of the Observer-
Source scenario in polar coordinates. 1In this figure, the plane defined
by the X-Y axes is parallel to the ocean bed and fixed with respect
thereto. The horizontal distance separating the Source and Observer is
labeled p and will be referred to in the future simply as the radius.
This polar radius is to be distinguished from the spherical radius
labeled r which is the distance separating the Observer and Source in
three-dimensional space. The vertical distance L is simply the diff-
erences in their depths. Figure 2.3.2 is the projection of Figure 2.3.1
onto the X-Y plane. The parameters appearing in this figure are defined

in Table 1.3.1.

14
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The linearized polar model is developed using a modified ver-

sion of the approximate modeling technique of Reference (5) except that

now, the origin of the conrdinate system is moving.

Ol

calculation:

o CHANNEL MODEL

Referring to Figure 1.3.2

o= [(xs - xo)
so_ L (xs -x)
axs 2
30 - (Ys i yo)
g s

2.1/2
-yo)}
30 .8 " %)
3x, 0 (2.3.1)
30 a_(ys-yo)
v o]

16
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Table 2.3.1

Explanation of Parameters Appearing in Figure 3.3.2

o the polar radius
Vo the velocity vector of the Observer
A 8 the angle between the polar radius p
and the (fixed) X axis '
Bo angle between the X axis and the 5

3 . velocity vector of the Observer

8 the relative bearing of the Source
¢ with respect to the Observer

G - £ P 2

! \ an x~-directed vector, used for
illustrative purposes

;

‘ Vy a y-directed vector, used for E

i illustrative purposes ¢

! t

i {
i iS a unit vector in the direction of -

increasing angle 8

v projection of the Observer velocity
B8 vector onto iB

Xo? Yor %50 Vg

position coordinates of the Observer
and Source, respectively, in the
rectangular coordinate system

ST

18
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(x_ - x) (y. = v)
. S Q . . s o . »
) 3 (xs xo) + 3 (ys - yo) 2.3.2)
bl is expanded as follows keeping only the linear terms:
0 3p
Prgp * P ¥ 30— (x “x )t @ - vg)
kL Tk %l TS Sk ik TSier Sk
+ 3p 30
- (x -x_ )+ (y -y ) (2.3.3)
%l o o Yole “Om1 %

Assuming a linear drag model for the Source as given in (1.3.1), upon

substituting (2.3.1) into (2.3.3) for the Source connected terms, and we get

(Kyy = %) = Ax + Bw, + Cu

k k
(xg = xo)] . :
bl TP T iy [aEg H B b Cu o+ Dw ]
X X x 'k i
(vg = v, . P
+ v, {Ay_ +Bw' + Cu. + Dw_ ]
P k s s s s_' |,
¥ ¥ PN S
- - )
M%) i Us Ty, -
? 'k Ol O 2 'k w+l k {
(2.3.4)

In the above equation and in all subsequent analysis, subscripts s and

o refer to the Source and the Observer, respectively.

Now

(x -x )Y=x T
Ox+1 %% ©
and (2.3.3)

(y Vo) =y, T

O+l K % f

Combining terms with like coefficients in (2.3.4) and making use of

(2.3.5),

- 19




(x, ~ x) (y.-v)
- ) o s o’ .
O+l o +A[ 5 x, * 5 yS]Ik
(x. - x) vy, -v)
+ Bf S 3 o ' + =8 S u' i
X P sy ‘k
(x, =~ x) (y. = v.)
+C[ Sp 2 Us + S 0 u |
x ° sy 'k
(x, -~ x) (y.=-v)
+D[ so S Ws + SO o w ],
X sy k
(x, - x) (y.=-v)
- s o’ . s
Tl P X% T ) yo]!k

(2.3.6)

Consider the coefficient of B appearing in Equaction (2.3.6). From Fig-

ure 2.3.2, (xs - %5) and (ys - ¥o) are the direction cosines hetween
o} [*]

the X and Y axes, respectively, and the o direction. Hence

w' o+ (ys B yo) w' _ow (2.3.7)
B x ) y B

(xs - xo)

is the sum of the projections of w; and w' cnto the s direction. This
sum acting in the ¢ direction can b: replaczd by a single equivalent
term denoted by w; . In a2 similar manner the coefficients of C and D

Q
are called u and'ws respectively. The coefficient of A in (2.3.56)
represents :hz projeczion of che Source velocity onto the radial direc-

tion. This coefficiant must be recasc in a different formulation in
order to complete the state model of (2.3.6). To this end Zguation

(2.3.2) is rewritten as follrws:

20
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e ot At e 5 A ee A DAt 0 A bR - Gt

(x. -~ x) (y. =-v) (x_ - x) (y.-vy)
S Q S Q ’: S - S [¢] -
) Xg * ) g =P T o *o ) 7o
2 .3.8)
(x_ - x) (y. = ¥,)
s ) s ) - 3.9
using X, + > v, = V° Cos aso 2.3.9
using 2.3.8 and 2.3.9 yields
(x_ - x) , (y_=v) .
S O ¢ +—2 © ¢y =5 + V Cos8 (2.3.10)
e} S P s Q SO

Substituting Equations (2.3.9) and (2.3.10) for the coefficients of
T and A, respectively, in (2.3.6) and collecting like cerms results in
the following state variable model:

= : o+ + + (A=T)(V Cosid_ /', 2.3.11
el T Pk + Ank + Bwsp CuSQ Dwsp (A=T) ( o so ' ( )
k k k
A similar approach is taken to develop a state model for 5k*l
By assuming that the Observer maintains a constant velocity for long
periods of time, and that W;o is a zero mean correlated GAUSSIAN random

process acting in the p direction the following state equations are

easily obtained.

) 1 A B 0 C (A-T) ug rD
)

. - . + -

) 0 E F o) A (E=-1) V Coss ‘ - G ws
o 0 0 -aT , o SO_ £ :,k
'sﬁ e ws 0 0 J

"+l Ple
(2.3.12

The underlying constraint for the state model (2.3.12) requires that

the Observer adopt a constant velocity profile.

21
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Z Channel

Using a discretized version of rthe basic linearized drag model
of chapter 1, and letting zso be the relative separation between

Source and Observer the following state model is presented.

. R ~TY] r
z 1 A B z ¢ (a-T) usz D ’!I
so - 0 E F zso - A (E=-1) zo . G lwsz
- k | }
w; 0 0 e aT w; 0 Q J ’
. 2 d k"'l . - e 2 % — - - -
(2.3.13)

The state model is also subject to the cénstraint of a constant
velocity Observer.

It is interesting to observe that both state models (2.3.12)
and (2.3.13) are identical although the types of manipulations involved
in the derivations are quite different. For example, a Taylor series
expansion is used to derive (2.3.12) whereas no such expansion is

used in deriving (2.3.13).
Bearing Channel

From a similar development the resultant state equations are presented.

22
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This completes the derivation of the linearized polar model in relative

coordinates for the moving Observer-Source scenario. In the next chap-
ter this model will be applied to passively track a maneuvering Source

using sonar time delays.

2.4 Conclusion

Before closing, a comment needs to be made concerning the con-
straints which the preceding state variable models place on the Observer
motion. While the state variable models are only valid for a non-

3 maneuvering, i.e. constant velocity Observer, this does not mean that

the Observer cannot execute any maneuvers. What is implied is that

during the maneuver the state models are inaccurate and will not yield

good estimates. Upon completion of the Observer maneuver, the model is



once again valid and will yileld good estimates. Of course, during a
maneuver transients are introduced and consequently any filter would

inevitably yield poor estimates during this period.




Chapter 3

PASSIVE TRACKING USING SONAR TIME DELAYS. THE ADAPTIVE.
EXTENDED POLAR KALMAN FILTER.

3.1 Introduction

In this chapter the linear polar model which was deveivped in
Chapter 2 will be employed to passively track a maneuvering Source using
sonar time delays. Figure 3.1.1, which uses notation similar to that
in Hassab [ 8], gives the two-dimensional geometry showing the paths
traversed by the Source-emitted sonar signals in question. The '"direct”
signal traverses the path labeled r. The "surface reflected”" signal

traverses the path labeled R, - R. and Ty is the difference in time of

2s 1s
arrival between this signal and the ''direct' signal, as measured at the
Observer. The "bottom reflected" signal traverses the path labeled
R2b - Rlb’ and T, is the difference in time of arrival between this
signal and the direct signal, as measured at the Observer.

From Hassab's work [ 8] the equations, which are repeated below

for convenience, show that Tl and T, are nonlinear functions of the

system state variables p and z,, as given in Figure 3.1.1.
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Therefore the Extended Kalman Filter must be employed to provide optimal
estimates in the presence of these nonlinear measurements.

The "éaaptive filter approach developed in [ 5] was earlier
applied with much success to tracking maneuvering air targets. This
approach will now be applied in the underwater environment to passively
track a maneuyvering Source from a moving Observer using the measurements
(3.1.1) and (3.1.2), Because of the coupling in (3.1.1) and (3.1.2) between
the p and 2., state variables, the p and z channels cannot be filtered
independently. Rather the two models developed separately in Chapter 2
must be combined in the manner described in Section 3.2.

A modified version of the conventional Extended Kalman Filter
algorithm must be developed in order tc accommodaie nonlinear filtering
using the adaptive filter approach. This will also be described in
the next section.

3.2 Combined o/z Channel Filtering of Sonmar Time Delays YUsing the
Augmented Extended Polar Kalman Filter

Consider the following combined o/z state vector:

-3

where the subscript so on zo, has been dropped for notational conve~
nience. The linearized state variable model corresponding to this
state vector is given in Equation (3.2.1). Defining

(1) _ (1) (1)
xk+l = Q}(k + I'u.k + Yw

k

where:
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Consider the deterministic input vector (3.2.1). fThe first
(1)

entry, namely ug , refers to the mean value of the ith Gaussian

)
curve in the series of N partially overlapping Gaussian curves

now being used to model the Source p channel input. Likewise the

superscript i on ug £
z
curve which is being used to model the Source z channel input.

in (3.2.1) refers to the ith Gaussian

The last entry, namely éo’ is the (known) Observer velocity in
the Z direction or vertical direction.
In general, the Source does not execute many maneuvers in

the Z direction. Whenever such a maneuver does take place it lasts only

for a brief period. This is true because the Source can move upward
only as far as the ocean surface and downward to its maximum permissible
depth, which is usually a relatively small distance compared to the
ocean depth. Therefore the Source is quite constrained in its movement
along the Z direction in Figure 3.1.1, The conclusion to be drawn frem
this is that the Source input ug is generally zero with there being
only brief periods of time when it is non~zero. Therefore in modeling
the Source input in the Z direction, only one time correlated Gaussian
curve with a mean value of zero is needed. However, since the measure-
ments are nonlineup functions of the state variables the extended

Kalamon filter is used.
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3.3 Summary of the Extended Kalman Filter

The Extended Kalman filter is usually the first filter to be

used when confronted with either system or measurement nonlinearities,
or both. This filter is well documented {11] and is summarized

in (3.2.2) - (3.2.7) for a linear system with nonlinear measurements.

P(k+l|k+l) = [I—K{;{(k+l|k)}}1{;l(k+llk)}]P(k+1|k)

X [I-R{X(k+L|k) HALX(k+L[K) ] T

+ RIX(kHL]K) FR(HFLR{X (k1] k) } T (3.2.2)

ROK(kHL] )} = P (kL | )BT { X (b [ k) } [HX (kL k) }P (L [ KO B Rkt [ k) } T

! + R@k+1) ]t (3.2.3)
Py
X . . - T v
. P(k+lik) = ¢P(k|k)¢" + ¥Q(k)¥ + I'Qul (3.2.4)
i
| K(HL|k+1) = XCktLlk) + ROR(kHL|k) } {2 (kD)= bl R(k+1 1) }] (3.2.5)
X(k+1]k) = 0X(k|k) + Tu(k) (3.2.6)
- 3hi(x)
H{X(k+1]k)}= [——BT] X+ ) (3.2.7)

Several comments need to be made concerning the above algorithm:

1. Equation (3.2.2) for the updated covariance
involves more terms than are usually used,
namely

A K I T, T e Vo g AT o s

P(kHL[kHL) = [T-R{XCRHL[K) VLR (1K) 1] C(ktl]k)  (3.2.8)

The additional terms appearing in (3.2.2) which
do not appear in (3.2.8) are necessary to
guarantee that P(k+l|k+l) is always symmetric.
The loss of symmetry that may occur in using
(3.2.8) 1in the Extended algorithm arises

from the approximate nature of this filtering




algorithm, especially the approximate
value for the Kalman Gain matrix which
the algorithm is only capable of pro-
ducing.

2. The Kalman Gain matrix is shown to be a
function of the predicted estimate
X(k+1|k) by explicitly including this
term in its argument. This functiomnal
relationship arises from the presence
in Equation (3.2.3) of the linearized
measurement. matrix H{X(k+l|k)} This
linearized measurement matrix is defined

by
dh, (X)

3. The measurement residuals are formed by
evaluating the nonlinear functional
relationships in (3.2.5) using the pre-
dicted estimate.

4, The additional term PQuPT in (3.2.4) is
used Lo account for the wiswmacch of
u(i) and the actual unknown u.
With the above comments complete, the adaptive Extended Kalman filter

algorithm is now discussed.

3.4 The Adaptive Tracking Filter

The heart of the adaptive filter developed in this report is
the forming of the estimate of the target states, in each channel, from
a weighted sum of estimates conditioned on the N possible discrete input
levels.

Consider the state model (3.2.1). This state model views the
target input acting in the polar direction as being derived from a
time correlated Gaussian density having a mean value up. Next consider
a series of N such Gaussian curves with displaced mean values
up(i), i=1,2, .. ., Nand partially overlapping '"tails" as shown in

Figure 3.2.1. If a bank of N Kalman filters is formed, each filter

based on the state equations of equation (3.2.1) with the deterministic
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Figure 3.2.1 Series of N Partially Overlapping Gaussian Curves




input uo being a different one of these N mean values, then a series
of N estimates is obtained, each conditioned on a different Gaussian
curve. Next a weighted sum of these estimates is obtained in a manner
to be disclosed below, and this weighted sum is taken to be the
unconditioned estimate of the target states.

Calculation of weighting coefficients: The general case

As previously discussed, the target input is now modeled as
coming from a series of N overlapping Gaussian curves each of which
has a predetermined mean value. As the target executes a series of
evasive maneuvers in the polar channel, for example, the changing input
to produce these maneuvers is viewed as randomly switching among these

N curves. By applying the semi-Markov statistics to this switching

process a series of N nrobabilit

ac LI 3 =
=22]

Mo 1= 1,2, .. ., ¥ is generated
[ 7] where

Wi 2z Pr {target input is being derived from the Gaussin

curve whose mean value is u (i).}

These Wi are then used to form the weighted estimate.

We begin with the well-known relation that the optimal estimate
can be written as a weighted sum of the input-conditioned estimates
as shown in figure 3.2.2 {11]. Thus if ﬁ(i)(k+1) represents the optimal
estimate of X(k+l) given that the ith input force u(i) is present
(the ith-input force being one of the previously described mean values),
then based on the data sequence

Z(k+1) = {z2(1), 2(2), ..., z(k), z(k+D)},

we define

- ANED)
x(k+1) = ) x'77 (k+1) W, (k+1)
1=1




e e

where
W (k+1) = Pr {u(k) = u(i)IZ(k+1)} (3.2.10)
and

x P (e41) = Elx@etl) Ju(k) = o P, zqet1)).
Equation (3.2.9) is a total probability expression developed from the
basic relation that

x(k+l) = E{x(k+1)|Z(k+1)}
is the optimal mean-squared estimate. It is well known that the
optimal input-conditioned estimates are provided by suitably matched
Kalman filters. In particular, for the LEE filter

x B ey = 000x P (1) + D + R+ [2(k+1)

- gex P ) - wra) oy

where

R(k+l) = M(k+1) HY[HM(k+1) H® + R]7T,

M(k+1) = 8(k) P(k) 8T (k) + ¥(k) Q¥T(k)
and

P(k+l) = [I - K(k+1)H] M(k+1).
The matrices ¢, ' and ¥ are used to denote the respective coefficient
matrices in (3.2.1).

The following is an outline of the analysis given in [ 5 ] to

calculate the recursive weighting coefficients W i=1,2, ..., N.

i’
Defining Z(k+l) = {Z(k), z(k+l)}, apply Bayes Theorem to (3.2.10) and

obtain

0, ety = 220000 = w0200} pla ) = 0, 200)

plz(k+1)[Z(k)}

(3.2.11)




The denominator, which varies with time; is independent of i and is
therefore common to each Wi(k+l) as a normalizing constant. The first
numerator factor is determined from the semi-Markov input process.
Expanding this factor in a total probability expression,
(1) g (1) (3)
Priu(k) = u "/ |Zk)} = T Priu(k)=u'"’|ulk - D)=u"I’, Z(k)IW, (k).
j=1 ]
And since Z(k) has no influence on the Markov state transitioms,
(1) g
Priu(k) = u'™/|2(k)} = § 6., W (k) (3.2.12)
1 ]
j=1
where the semi-Markov probability is
eji = Pr{u(k) = u(l)lu(k-l) = u(J)}
Combining (3.2.11) and (3.2.12)

(1) ...
y L\K)TJ

<D
b
~~
?

A e
~~
(W)
[\
FJ
(W)
N~

W (ktl) = C p{z(k+l)|ulk) = u

[ 3t § =

1 313
where C is a normalizing constant
is the desired recursive relation for Wi' The required density p is
approximately normally distributed and has distribution
Pzl u() = o, 20} & N (o (D), C DI, (3.2.16)
where
a, (k) = B[00 P 0 + 10 o 0] (3.2.15)

and

C,(kHl) = [HM(k+1) HL + R]

Consider the measurement density conditioned on the ith mean
value as given in (3.2.14). This density has covariance given by (3.2.15).
What characterizes the different target "'states" is the set of N
Gaussian curves used to model the switching input. However, the target

dynamics remain the same for all the '"states'. Consequently, if the
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‘ process and measurement noise covariances Q(k+l) and R(k+l), respec-
tively, are assumed to remain constant as the target switches from
one "'state" to another, then none of the quantities on the right is
conditioned on i. Under these conditions, for a given value of
(k+1), Ci(k+l) has the same value for all values of i =1, 2, . . .,
n. Indeed it is clear that for each value of (k+l), the entire

covariance analysis is identical for each filter in the previously

mentioned filter "bank'. Therefore, the bank of filters computationaly
is not much more than that of a single filter.

3.5 The Adaptive Extended Kalman Filter

f} In the one step ahead prediction by the adaptive filter, N

(1)

predicted estimates i(k+llk) are produced, each one conditioned on

a different vector (3.2.9). In general, the weighted estimate

~ N ~ (i)
X (k+1| k) b X(k+1l|k) W, (k) (3.3.1)
k i=1

3 is closer to the true state vector than the individual conditioned
estimates where the weights Wi(k) are those which are computed at the
end of the kth iteration. By computing the Gain matrix (3.2.3) using
an H matrix linearized aboul (3.3.1) rather than N such Gain matrices
linearized about the individual estimates i(k+l]k) (i), a more accurate

value is obtained. Since only one H matrix (and one Gain matrix) is now

being used, the entire covariance analysis becomes the same for each

mean value and a single filter suffices for this portion of the algorithm.

This is how the conflicting requirements of the adaptive and Extended
Kalman filter algorithms are reconciled. In summary, Equations (3.2.2),
(3.2.3), and (3.2.4) describe the covariance portion of the Extended
Kalman filter provided linearization takes place about i(k+l|k) as

defined by (3.3.1).
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The state predict and state update equations are now given
with reference to the nonlinear measurements.

T = hl(X)
12 = hz(x)

where hl, h, are defined in (3.1) and (3.2), respectively and,

2
Rl l) D) - oxkji) D + 1D,

The ith filter conditional measurement residual is defined as

30 o) z, (et = by (X(ket]io) P

1

¥ 1)z 1) (3.3.2)

3D e z_ (k+l) - h,(X(k+l|k) }
2 T, 2

where
zfl (k+1) and zT2 (k+1) are the noisy measurements of T and Tys
respectively, at time (k+1). N such conditional measurement residuals
are computed corresponding to the N column vectors given by (3.2.1).
Then the ith updated state estimate is computed as follows:
D 1[4y = D e 1) = RERCHL |0 FIED) (k41 ] (3.3.3)
for each value of 1 =1, 2, ..., N.
In order to complete the adaptive Extended Kalman filter

algorithm, the linearized H matrix is now developed. Referring to

Equation (3.2.7), H has the form

T T
-1 1
ap 0 0 3z 0 0
H(k+l) = 4
312 312 (3.3.4)
B 0 0 7 0 o
X(k+1 k)

Note that z is the relative vertical separation, i.e. z in Figure

80

3.1.1. From (3.1) and (3.2) we get
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30 Dl DZ c
3 -
1 2
(3.3.5)
3p D3 DZ c
i [(z+2302) LI
3z D3 D2
where

- 2 2 2 1/2
Dl (" + 2" + 4H01 - 45012)
DZ - (92 + z2)1/2

- 2 2 2 1/2
D3 (" + 2" + aaoz + 4H022)

Note that Equations (3.3.5) are evaluated using the one step ahead
predicted states; implicit in this, too, is that the predicted values
for H01 and HOZ are also calculated and used in (3.3.5). Equations
(3.2.2), (3.2.3), (3.2.4) and (3.3.1) - (3.3.3) constitute the
adaptive Extended Kalman filter algorithm.

A weighted estimate of the updated conditional estimates is

next formed using the weights given by (3.2.11). It should be pointed
cut that bgcause the measurements now form a vector, namely
rl(k+1) + vl(k*l)
Z(k+l) =
T, (k+l) + v, (k+l)
2 = -
Ja2r: Vl’ vy o2 additive zero mean white Gaussian measurement noise,

the multivariate Gaussian distribution must be used to compute the
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above weights. This distribution has the mean value vector

hl(i(kﬂlk)(“):l
[hz(i(kﬂlk)(i))
and covariance matrix
C(k+l) = [B{R(k+L|k)}P(k+1| k) H{R(k+1|k)}T + R(k+1)]
This completes the discussion of the Adaptive Extended Kalman filtering

algorithm. In the next section specific design values will be

discussed and the resulting filter performance evaluated.
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3.6 Specific Filter Designs and the Resulting Filter Performance
Using Synthetic Data

i . The numerical values used for submarine velocities, depths, etc.
in the remainder of this report should not be taken as being representa-
tive of actual values for modern submarines, but are used exclusively

1 ‘ for reference purposes.

The parameter selection process concerns itself with the

4 following parameter set

{a, 0_, N, Vmax’ a, Qu}

c

i N where

% a is the assumed drag coefficient

£ cc is the standard deviation of the correlated process
N is the number of levels (mean values)

Vmax is the assumed maximum possible speed of the target
set to be tracked
) a= l/tc

where T is the correlation time constant of the correlated process,

and Qu = E(u-\‘g‘%(-tu-uu))T is the mismatch term in the covariance

calculation.

The set of parameter values is summarized below:

PR oot o> et

T = 10.0 secs
a = 0.05

'$ [+] = 0#18
| ¢ = 0.03

; | * N =7

v = 224 ft/sec

a = 0.25




B
0

1 e g el | — ¢

(1)
“sa : -1.2, -0.8, ~0.4, 0.0, 0.4, 0.8, 1.2

o B g0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0

-]
z
— -
0.01 0 0 0
0 0.06 O 0
Q:
e o 0 0 0
6 o0 o0 0

The following initial conditions are used:
'
HOZ = 2000

z = 400
so

- t
B, 6000

With a water depth Hw of 5000', these initial conditions place
the Observer and Source at depths (below the water surface) of 1000' and
600', respectively, with the Source 400' above the Observer. These
depths are more realistic than those used before. Because of tempera-
ture gradients and a variety of other reasons, the velocity of sound
in water is not a constant but varies with position. 1In an attempt
to take this into account, the velocity is modeled as a Gaussian random
process with a mean value C = 4950 (ft/sec). This is the modeling
technique which 1s used in [ 8]. The above conditions, which provide
for a much more realistic environment in which to test the filter,

vield the following range of time delays:

rl: 26 m.sec. - 1l m.sec.

T, 951 m.sec. - 471 m.sec.

With additive measurement noise of 5 m.sec. standard deviation, the
SNR for the T measurements gets lower as time progresses due to the
42
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% o decreasing value of T This decrease in 7 (and to a lesser degree
i
i T2) is caused by the decrease in the difference between the lengths
3 of the direct and surface reflected paths as the separation of Observer
i - and Source increases. In addition, since these time delays are gen-

3 ) erated using a random velocity of sound in water, the SNR of 1. is

1
effectively decreased even further.

3 Figure 3.6.1 shows the relative positions of the Source and
Observer. Vs is the Source velocity with respec . to the fixed X axis

3 and Vo is the Observer velocity, also with respect to the fixed X axis.

In Figures 3.6.2 ~ 3.6.4, the Source has a horizontal velocity

Vs of 20 (ft/sec) and the Observer a horizontal velocity Vo of 4 (ft/
sec). This yields a 16 (ft/sec) relative horizontal velocity of the
Source with respect to the moving Observer,at a time unknown to the
Observer the target makes a major speed change as shown in Figure
3.6.3. The percent error in radial position is generally well within
1 » +3% in Figure 3.6.2. The radial velocity estimates in Figure 3.6.3
i l continue to oscillate, but with smaller excursions than with N = 3
i levels. 1In Figure 3.6.4, the excursions in the z estimates are on
] ‘ the average in error by 50 feet.
It appears, therefore, that increasing the number of mean values

- from 3 to 7 just about maintains the same filter performance in the

face of reduced SNR on T and the modeling of the velocity of sound

in water as a random process to generate the sonar time delay data.

; The oscillations in radial rate 5 are still present and a slight

. decrease has occurred in the quality of the vertical separation estimate.
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A % Error in p

at - ol_ = 5 m. sec.
5.95 4+ 1 2

5.02 +
4.08 1
3.15 1

|
4
E
i
}
“i 2.22 4

1.29 + ;

Al g ML
~0.50 4 \ "\
-1.50 T+ \l ! ‘\

-2.44 T \/V

-3.37 \
L 3 0 Time (Minutes) 15

Figure 3.6.2 Percent Error in Source Relative Radial Position
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501 -k

471 4+

441 T

400 M\_

+ 20 (feet)

Actual Source Relative Vertical Positiom: 400'

352 ¢
323 4

293 |l 1

234 +

204

Figure 3.6.%

Time (Minutes) 15

Estimate of Source Relative Vertical Position
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3.7 Conclusion

Depending on the horizontal distance separating the Observer
and Source, the ray paths in Figure 3.1.1 may undergo multiple reflec-
tions before arriving at the Source. By this is meant that the surface-
reflected wave may be reflected back to the ocean floor and then back
to the surface before arriving at the Observer. A similar situation
exists for the bottom-reflected wave. Another problem which the sonar
time delay tracker may have to contend with is the problem of inter-
mittently available time delays. For example, the analysis in this
chapter presupposes that the two time delays are available simulta-
neously. Under certain conditions, this fortuitous situation may not
occur and the time delays may be individually available only at random
times, or one or both of them may not be available at all for certain
periods.

Thus the sonar time delay tracker is susceptible to a variety
of debilitating influences. The decoupling of the bearing tracker from
the processing of the time delays, which the Adaptive Polar Kalman
filter developed in this chapter permits, enables bearing measurements
to be processed even if the sonar time delays develop poor quality
or are interrupted. With the rectangular filters, the processing of
the bearing measurements is coupled to the processing of the sonar time
delays, and any interruption of the latter brings the bearing estimation
to a halt as well. Thus filtering in polar coordinates not only reduces
the order of the measurement linearization matrix, but also localizes
to the p-z plane the deleterious effects of poor quality sonar time

delay measurement data.
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The decoupling of the bearing channel as a result of filtering
in polar coordinates has two important results: namely, that the order
of the linearized measurement matrix H is reduced by one and the
effects of poor or intermittently available sonar time delays are
confined tg the p-z plane. The estimates of the Source radial velocity
become very poor under low SNR conditions on the sonar time delays.

Therefore a search for an i.dependent method of estimating the Source

radial velocity is worthwhile. This method should function reliably

and accurately regardless of the quality of the sonar time delay
measurements. The remaining part of this report is devoted to
developing an independent method which precisely satisfies these

requirements.
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Chapter 4

PASSIVE TRACKING OF SOURCE RELATIVE RADIAL VELOCITY PROFILE USING
THE DOPPLER EFFECT AND KNOWN CONSTANT CENTER FREQUENCY

4.1 Introduction

It is shown at the end of Chapter 3 that passive tracking
using sonar time delays yields acceptable results only when these
measurements are characterized by high signal-to-noise ratios. How-
ever, even under such favorable conditions, oscillations occur in
the estimates of the Source relative radial velocity; these oscillations
increase as the SNR ratio decreases. This, in turn, causes the per-
cent error in the Source relative radial position to increase and also
leads to much poorer estimates of the Source relative vertical position.
While it is true that the performance of any filter will suffer under
adverse SNR conditions, the effect is particularly pronounced with
both the Extended and Adaptive Extended Kalman filters, because of
the approximate nature of these filters.

There exists another and to a considerable extent an indepen-
dent method of determining estimates of the Source radial velocity
(note that the term 'relative" is dropped; from this point onward,
and unless stated otherwise, whenever Source position or velocity
is mentioned, it is implied that they are relative to the Observer).
This method uses what is commonly known as the Doppler effect. The
next section serves as a brief introduction to the Doppler effect.

The remainder of this chapter is then devoted to using this
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effect (assuming the "center frequency" fo is known) to passively track
the radial velocity profile of a maneuvering Source. The next chap-
ter will address this problem assuming the center frequency is not

known, but rather a random process.

4,2 The Doppler Effect for Sound Waves

Consider Figure 4.2.1(a). 1In this figure the stationary sound
source A is transmitting a sound wave of frequency fo (also called the
"center frequency”). Because of his motion, the frequency of the
sound heard by the listener B is not the center frequency fo but some
other frequency ft to be determined. Before proceeding further, it
should first be pointed ocut that r in Figure 4.2.1 refers to the
separation of the source and listener in three-dimensional space--the
spherical radius. For example, in (a) the-listener might be a subma-
rine and the socurce a floating Sonar buoy providing navigation infor-
mation by means of the Doppler effect. Thus r need not be horizontal
as drawn. In addition, E is the component of the listener's velocity
vector acting along the radial direction r--the spherical radius

rate. With the meaning of r and r firmly established, refer again

to Figure 4.2.1(a), where the listener is moving away from the

stationary source with a radial velocity r. This radial velocity }

imparts a shift [{2]

OF = = £ £/C (4.2.1)

td
k
to the center frequency, where C is the velocity of sound in the ]i
[

surrounding medium. This frequency shift is rhen added to the center
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frequency and it is the sum of these two frequencies which the listener
hears
£,r .

ft = fo + (- —E—) = fo [1 - r/C) (4.2.2)
Equation (4.2.1) implies that for a positive (negative) r, the received
frequency ft in (4.2.2) is less (greater) than the center frequency fo.

Now comnsider Figure 4.2.1(b) where the source is moving and
the listener is statiomary. The exact expression for the shift in this
case is different from that given by (4.2.1). However, if the speed
of the source is small compared to the speed of sound in the surround-
ing medium, then the shift imparted to fo in case (b) simplifies to
that given in (4.2.1) [12]. This implies that ft in case (b) is also
given by (4.2.2).

Now the typical underwater scenario where both the Source and
Observer (Listener) are moving does not fall into either case (a) or
{(b) in Figure 4.2.1. To determine the formulas for the Doppler shift
in this situation, Equation (20-11) in reference {12] states that for

a moving Observer and Source

vO

£ = f, (1)
_vs

1+ 7;)

whers ‘"the upper signs correspond to the Source and Observer moving
along the line joining the two in the direction ftoward the other,
and the lower signs in the direction away from the other." These

two cases are now considered individually.

53

[ —




Case I Source and Observer moving toward each other with speeds
\A and Vo respectively.

v

(1 +'-2) v v
f£omf ——CT s (1 +-2)(1 +-5)
t o v o Cc Cc

(1-?5)

v
if'?? << 1. Therefore

V0 VS VC) +v3
£o=f L+ +) = L+ (4.2.3)

Let r be defined as the rate of increase in the distance r separating
the Observer and Source. Then since v, and v, are positive numbers
(speeds)

rs - (v° + vs)
is tﬁe relative radial velocity of the Source with respect to the

moving Observer and is negative. Substituting this into (4.2.3)

ft = fo(l - r/C) (4.2.4)

for E < Q.

Case II Source and Observer moving away from each other with speeds
v_ and Vo respectively.

s
v0
1-—-=) .V v
ft = fo -____él_ = f'o a- 7§) a- 7§)
1 +.3
( c)
Vs
if < << 1. Therefore

v +v
o S

Vo Vg
£, = fo a- < 7?) = fo a- c

) (4.2.5)

54

¢+ aam ahar




Defining r as the rate of increase in r, then
r= (vo + vs)

and r is, once again, the relative radial velocity of the Source with

respect to the moving Observer and is now positive. Substituting this

into (4.2.5)

fc = f° (1 - x/C) (4.2.6)

for r > O.

Equations (4.2.4) and (4.2.6) are valid for r < 0 and T > O,
respectively. However, these two equations are identical and the
conclusion is that either of these is the expression for the received
frequency as measured at the moving Observer when r is intervreted as
the relative radial velocity of the moving Source with respect to the
moving Observer. Therefore the situations in Figure 4.2.1 which lead
to Equation (4.2.2) are both special cases of the more general case
involving motion by both the Observer and Source. In summary, the
Doppler shift Af is given by (4.2.1) where r is interpreted as the
relative radial velocity of the Source with respect to the moving
Observer and the received frequency measured at the Observer is
given by Equation (4.2.6). Having discussed the Doppler effect in

the presence of a moving Observer and Source, the use of this effect

in passive tracking is now discussed.

4.3 Velocity Tracking Using the Doppler Effect

Consider the Observer-Source situation shown in Figure 3.6.1.

The distance r is given by

1/2
2
r = (p2 + 2g,")




=0 +2 (z"‘—°) (4.3.1)
T so'r e

For the reasons cited in Chapter 3, there are only relatively short

periods when éso ¥ 0. Also for large values of r,

80,
<=0
and (4.3.2)
CAR
@ =1

The approximations in (4.3.2) have good physical justifications. The
Source and Observer are, because of pressure buildup, very restricted
in how far below the ocean surface they can safely penetrate. This

restriction on vertical movement in turn places limitations on the

extent of their vertical separation, L There is no such restriction,

however, on the horizontal distance separating them. Therefore, while

the vertical separation z__ is measured in, say, hundreds of feet,

sO

the horizontal distance 0 is measured in miles or tens of miles.

In view of Equation (4.3.2), Equation (4.3.1) can be approximated as

P (4.3.3)
and
£ p -f
Af = - - Co) ; (4.3.4)

where C is the velocity of sound in water.

This simplification of Equation (4.3.1) to (4.3.3) has,
through Equation (4.3.4), shown that the Doppler shift is a linear
function of the radial rate . Consequently the radial channel model

for the maneuvering Observer=-Source dynamics developed in Chapter 2
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can now be used to passively track the Source radial velocity using

(4.3.4). This model is repeated below for convenience.

0 1 a B 1 ¢ Aa-D [ u '1 D
So
p| = |0 E F o[+ |a (D |y coss (+]6 ,
-aT o sﬂ s,
w' 0 0 e w' 0 o . k!(J k
sp sp i
k+1 k -

Equation (4.3.4) shows that the radial velocity information is

contained in the Doppler shift. However, the measured frequency £

et

is not the shift, but rather the sum of the shift, center frequency

f° and measurement noise:

f“’1<+1 = fo + Afk+l + Vil (4.3.5)
where
_fo .
A = () Prn : (4.3.6)

If the known center frequency fo appearing in (4.3.5) is looked upon
as a fixed measurement bias added onto the shift Afk+1’ then the bias

can be directly removed since fo is known in this chapter. Therefore.

by prefiltering the measured frequency f , the resulting prefiltered

+1
measurement Afk+1 + vk+1
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. is a linear function of the state variable 5 as given by (4.3.6).

Using the state vector

= 2
2wl Ty vV Tt [0 (D) 0]

(4.3.7)

Zre1 = B ¥ Vien

and the adaptive Kalman filter algorithm can be applied to these noisy

measurements (4.3.7) using the earlier parameter values of Chapter 3.

Consider now Figure 4.3.1 where the Source and Observer are
moving horizontally, the latrer at a constant velocity V, = 2 ft/sec.

The Source makes several abrupt changes in its velocity as shown by the

solid line in Figure 4.3.2. The dotted line in this figure gives the

weighted estimate produced by the adaptive Kalman filter using the

noisy frequency measurements given by (4.3.5). This weighted estimate

is seen to closely track the abruptly changing velocity profile of

the Source with relatively small lag time. These good velocity

estimates provide a reassuring test of the accuracy of the state
equation for 6 in compensating for Observer motion. To appreciate
this point, first note that 5 is the relative radial velocity of the

Source with respect to the moving Observer. Consequently, any sig-

nificant error in compensating for the component of the Observer's

own velocity acting in the radial direction will ultimately result

in a bias on the estimate of the Source radial velocity. This bias

i3 clearly absent in Figure 4.3.2.




Observer Source

ps, P

Figure 4.3.1 Relative Position of Observer and Source in Obtaining
the Results in Figures 4.3.2 and 4.3.3
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Figure 4.3.2 Relative Radial Velocity of Maneuvering Source with Respect to the Moving Observer
Using Doppler Frequency Measurements and Known Center Frequency
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Figure 4.3.3 Percent Error in Source Relative Radial Position Using Doppler Frequency
Measurements and Known Center Frequency
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The trajectory in Figure 4.3.2 also provides a check on the
"integrating effect" of the state model in the following manner. A
very good initial estimate of the Source radial position is assumed at
t = 0 in Figure 4.3.3. Then the state equation for Pl "integrates"”
the combined effect of the Source radial velocity estimate and the Ob-
server radial velocity to arrive at the Source radial position estimate
; at each time step. The percent error in Source radial position at each
step is then calculated and the results are plotted in Figure 4.3.3. It
is seen that over a period of 50 minutes the percent error in Source
radial position never exceeds *27. These results attest to the accuracy
of the state equation for p, particularly in its compensation for Ob-

server motion.

4.4 Conclusion

The tracking of a maneuvering Source velocity profile using the
Doppler effect and known center frequency f° is a relatively straight-
forward filtering problem in polar coordinates. The adaptive polar
filter developed in Chapter 2 performs well in responding to abrupt
changes in Source radial velocity. Assuming a good initial estimate of
Source radial position, the adaptive filter ''integrates out' the velocity
estimates to yield good position estimates. These radial position esti-
mates remain within *27 of the true radial position in the presence of
several velocity changes by the Source. These results indirectly attest
to the accuracy of the linearized polar state variable model for the
maneuvering Observer-Source scenario, particularly in its compensation

for Observer velocity.
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Chapter 5

PASSIVE TRACKING OF SOURCE RADIAL VELOCITY USING THE DOPPLER EFFECT
IN THE PRESENCE OF A RANDOMLY VARYING CENTER FREQUENCY

5.1 Introduction

In Chapter 4, the Doppler effect is used to passively track the
Source radial velocity assuming the center frequency fo is known. Typi-
cally, a submarine emits a broad sound spectrum having several discrete
line spectra. These line spectra are cften generated by machinery on
board the Source. As previously discussed any of these frequencies can
serve as the center frequency fo emitted by the Source. However, under
realistic tactical situations, this center frequency fo is either unknoun
or a slowly varying random process. From previous work we know that the
Doppler information is contained in the éh&ét Af. Unfortunately it is not
the shift, but rather the sum of the shift and center frequency which is

measured by the Observer, as indicated in Chapter 4. Therefore the

measvred frequency fm is virtually useless for estimating the Source
radial velocity unless the center frequency is known or estimated. The
received frequency ft (ignoring measurement noise) as measured by the
Observer is given by
£.p

ft = fo + Af = fo - (5.1.1)
where the parameters fo’ ﬁ and C have been described in detail in the
previous chapter. Since fo is unknown, then for any given value for ft’
there exists an infinity of possible combinations of values for fo and Af

which sum together to give ft' Any algorithm, therefore, designed to
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process ft must be cognizant of this fact and take steps to select the
correct pair of values. Another important point to note is that in order
to estimate fo, it must be defined as a state variable. The full impli-~
cation of this can be realized by referring to

o

Af = -~

This equation shows that the shift Af now Linvolves the product of the
state variables p and £, and consequently a nonlinear estimation probLem
must be solved in order to process the Doppler measurement. In short, the
ssumption that fo is unknown or random has the following two results:

1. It increases the number of state variables
(and hence the order of the system) by one and

2. it increases the complexity of the problem by
transforming the linear estimation problem of
Chapter 4 into a nonlinear estimation problem
involving the product of state variables.

It was stated in Section 2.2 that '"the Extended Kalman filter is
usually the first filter to be used when confronted with either system or
measurement nonlinearities." Rather than using the Extended Kalman filter,
an entirely different approach is used. This new approach consists of
performing a "transformation' on the problem which shifts the nonlinearity
in such a manner that it can be '"disposed of" in a relatively easy manner.
Then a ''pseudo-linear' filter is developed to process the nonlinear measure-

ments (5.1.1), using essentially basic linear filtering theory. The details

will become clear as the development prcceeds.

5.2 State Variable Model for Doppler Measurements of a Random Center

Frequency

The received frequency ftK+1 neglecting noise at time t 1’ and

K+

PO s TR -t ATV




Y R S

e

random center frequency fJ becomes

K+1 .
1]
' -fok"'l .
ftk+1 = fok+l t ) P (5.2.1)

Now, by using equation (2.3.12) for Range rate (ék+l) we can rewrite (5.2.1)

when the substitution

e N R

k ok is made.

A
£ ok/C

Af ter making several cancellationms

£ ' -f' \
o Q
£, = f; + (_?$ii, E(f, - fg ) +-(——7£Stl) [Fw; + ]
k+1 k+1 Oy k k Py

Letting the center frequency at time (k+1)T be

£, = £+ &f]
k+1 k %k
where 6f; is the purely random'variation which fé undergoes to produce
k k
fé . Note that Sfé is entirely unrelated to the Doppler effect.
k+1 k £
%k+1
Now for a small variance on Sf; , the ratio 7 on the average is near
k o
unity. k
Thus by making this approximation in (5.2.2), and bringing fé over to
k+1
the left side then defining
Af = f - f!
kLT Tt %
Af, = £ - f! :
k t K f
|
we get for the first Doppler state equation
~f!
%k
= —— ' -
Afk+1’ E Afk + ( c ) FwS + Aus + (E-1) (Vo CosBdo)k+GWs
P Py Py
(5.2.3)
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-f! -f'
[

o
k+1
c C ) on the

right side in (5.2.3). In order to make the problem tractable, the

; Note that the approximation ( k) was substituted for (
3 assumption that fé is Gaussian with a mean value fo is made. Let fé be

described by the following autocorrelation function

; -a_ |T| (5.2.4)
£ 2 2 f
3 Rf.(r) fO + o¢ e o
o o
where
£, = Eif (v
By converting to discrete time kT, (k+1)T, ... the random process

Wfo (tk+l) becomes

-af T 1 -a. T
' = ' - -
wfo e o wfo + 3 (1 e o) wfo (5.2.5)
k+1 k o k
-a_. T
and letting J = ;l~ (1 -e fo ) as before
f
o
equation 5.2.5 becomes
. —af T
' = 1 o
fopg ~To e o Wy T IWg (5.2.6) 5
%k k :
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The expression (5.2.6) is not yet in proper state variable form

because of the presence of the unknown mean value fo. This mean value can
be eliminated by subtracting

= LI |
fo (fo we )

k o
and substituting this expression into (5.2.6) for f° yielding
~a¢ T
f! =f' -—w! +e 0o wl +Jw
®k+1 %k fo fo fo
k k k

Collecting like terms, the following discrete time state equation for
the randomly varying center frequency fé becomes

—af T
' = f£! - '
f fo + (e o) 1) we +Jw

Opt1 K o f (5.2.7)

k %k
The state equations (5.2.3), (5.2.5) and (5.2.7) collectively form the
Doppler frequency state variable model (5.2.8) with measurement model
given by (5.2.9), and are summarized on the following page.

The following observations are now in order. The auto-

correlation function (5.2.4) was chosen with the following properties in

mind: 1, It represents a random process having a
mean value fo.

2. The exponential correlation is versatile
in that it provides a tractable yet real-
istic model for actual random phenomena.
In addition, the parameter a; can be adjusted
o
to model processes having bandwidths varying
from wide to very narrow.

The added complexity of a random center frequency f'o has in-
creased the order of the state variable model by one. Note that the state
equation for fé (second row in (5.2.8) has the term J in the ¥ matrix.
This term provides a means of setting a lower bound on the magnitude of

yeay

the error covariance for the conditional estimate fo No such term

exists in the unknown constant center frequency case. This is an added
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"benefit" of the random center frequency assumption.

Like the previous Doppler frequency models, (5.2.8) is not a
linear state variable model because of the presence of the state variable
fé in the ¥ matrix. However, since fé is a random process, initialization
using the first noisy frequency measurement can be applied to (5.2.8) to
make it a pseudo~linear time-varying state variable model.

The presence of w; in (5.2.8) indicates that this Doppler

0

frequency state model also requires interaction with the reduced order

radial channel model given in Chapter 2 by

(W _ i ()
p E F p A (E-1) u G
S
= + e + v
W' 0 e 3T | | ur 0 0 V_ Cos@ J Pk
Sp Sp R (o] i=Ye)
- k+ll- k - -k -

This will allow w; (tk) to be estimated and then used in the Doppler filter
P -a. T
dynamics matrix ¢ equation (5.2.8). In addition, (e fo ~ 1) and

-a, T
gl—(l - = fo ) appearing in the Doppler frequency equation (5.2.7) are

o
functions only of the correlation time constant

I
fo af
o

in the autocorrelation function.

5.3 Performance Anlysis of the Doppler Frequency State Variable Model
for the Randomly Varying Center Frequency Case

Figure (5.3.1) shows the structure of the filter to be analyzed
in this chapter. Each block consists of a Kalman Filter, either Doppler

frequency to the left, or polar range estimator to the right. The inputs

(1)

are the N discrete levels Ug , and each filter i{s now separately computed
P

since the state matrices are functions of (1). Thus N sets of frequency and
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radial channel estimates are produced, each set being conditioned on a

(1)

different mean value usp s, 1 -1, 2, ..., N. The reason why this
particular filter structure is chosen will become clear later when the
block labeled "Adaptive Estimator'" is discussed. For the present the
operation of the filter without the adaptive portion is examined. This
will serve to gain an appreciation for the filter's operating character-
istics which will then set the framework for developing the adaptive
section.

Figure (5.3.2) is a block diagram of the model used to generate
the noisy frequency measurement data. The quantity r appearing there is
the Course spherical radius rate and is essentially a random process having
an unknown distribution. This rate then multiplies the random center
frequency fé and this product is divided by the velocity of séund in water.
In the first series of results to be discussed below, this velocity is
assumed to be a counstant C (switch open in Figure (5.3.2). The switch will
then be closed for the later results when the velocity of sound in water is
modeled as a white Gaussian random process having a mean value C. The zero
mean white Gaussian curves on the extreme left and right of the figure

represent the distributions of wg, and V41 in Equatioas (5.2.5) and (5.2.9),

+1

respectively., Thus the noisy measurement f in Figure (5.3.2) is a
+1
relatively complex combination of products, quotients and sums of random

processes, most of whose distributions (fé f, Af, ft) are unknown.

The following results are obtained using the scenario in Figure
(3.6.1) whereby the observer trails the source with velocity

V° = 2 ft/sec, and Vs = 20 ft/sec.
The filter parameters and mean values are given in Chapter 3. The following

additional parameters have the indicated values:
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0.3 Hertz

17 seconds

-
"

rh
N

500 Hertz (mean value of Random Center Frequency f;)

(@]
L}

4950 ft/sec
Frequency measurement noise standard deviation is the same as before.
This latter set of values is selected to produce a random center

: frequency having significant excursions about the mean value of 500 Hertz;

% the correlaticn time censtant being less than two sampling intervals ensures

. that the random variation in frequency is quite rapid.

The Source velocity of 20 ft/sec corresponds to a Source control

input
i . usp = avs = (0.05)(20) = 1.0

This Source input lies midway between the sixth and seventh filter mean

values u, 6 _ 0.8 and ug (D . 1.2, respebtively.
o p

Figure (5.3.3) shows the seventh (fé(7)), sixth (%é(s)) and fifth

(%é(s)), virtual center frequencies (VCF) versus the actual random center

frequency fé. The remaining four VCFs, which lie progressively further

= (3)

below fo in the figure, are not shown for reasons of clarity. Note how

each VCF closely follows the random variations of fé . Throughout the entire
time period of 18 minutes, the actual center frequency is generally bracketed
midway between the seventh and sixth VCFs. This is particularly satisfying f
since the Source input is likewise bracketed between the sixth and seventh

mean values.

When either the Observer or Source changes its radial velocity, an

e it e

immediate jump occurs in the measured frequency fm. Consequently it is im-

PR
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portant that the filter be able to discriminate bet 'een a jump in the
measured frequency caused by an Observer maneuver on the one hand and a
Source maneuver on the other. To investigate this, the Observer speed Vo
is increased from 2 ft/sec to 8 ft/sec beginning at t = 7.5 minutes., First
note that since this is an Observer maneuver only, the Source input has not
changed and continues to be bracketed between the two mean values as before.

From Figure (5.3.3) this Observer maneuver {4 notl reflected in the
estimates and the actual center frequency continues to be bracketed between
the sixth and seventh VCFs as before. This is to be expected as this shows
that the filter recognized the jump in measured frequency as having been
caused by an Observer maneuver.

Consider now Figure (5.3.4) which shows the three virtual Doppler

-

shifts Af(s), Af(6) and Af(7) versus the actual Doppler shift. Here, the

actual shift is bracketed between Af(6) and Af(7) as required by
u (N <u <u (6). Note that the Observer maneuver {4 reflected in
Sp p Sp

the virtual Doppler shifts. To understand why this is necessary, first note
that a sudden change in the Observer velocity Vo causes a sudden change in
the Source relative radial velocity o. This sudden change in 6 in turn
causes a sudden change in the actual Doppler shift Af. However, since the
Source input has not changed, the virtual shifts (VS) must change in such a
way that Af remains bracketed midway between Af(6) and &f(7).

Figures (5.3.3) and (5.3.4) together illustrate how the filter

exploits its degree of freedom by satisfying the required inequalities. For

example, note how the VCFs in Figure (5.3.3) satisfy
20 ¢ 1) 5D
o o )

while the VS's in Figure (5.3.4) satisfy
ALY IO RIS
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TN O

The actual Source radial velocity 6 in Figure (5.3.5) remains

bracketed between the virtual radial velocities (VRV) 6(6) and p

-~ A
.

(6)

(7N

and 5
in the presence of the Observer maneuver. Here again, since the Source
input has not changed, the filter responds by changing the VRVs to maintain
the actual value midway between the sixth and seventh VRVs.

The behavior of this filter in the presence of a Source maneuver
is examined in the next three figures. With the same set of parameters and
jnitial conditioms as in the preceding figures, the Source velocity VS
changes from 20 to 12 ft/sec beginning at t = 7.5 minutes. The new Source
input ug = 0.6 is midway between ug (5 and ug (6).

pThe response to this Sourcz maneuver gs radically different from
that for the Observer maneuver. Consider for example Figure (5.3.6) where
we see that after the Source maneuver at t = 7.5 minutes, the VCFs all
shift upward by an amount sufficient to have the actual center frequency
f; bracketed midway between the fifth and sixth VCFs. The response time of
thr rilter is quite good as this upward shift by the estimates is immedi-
«tely perceptible at the initiation of the maneuver. Note how the VCFs
continue to follow the random variations of fé both before and after the
maneuver. %

In Figure (5.3.7) the actual shift which is initially bracketed
between the sixth and seventh VS's before the maneuver ends up midway
between the fifth and sixth VS's after the maneuver. This same situation
applies to the radial velocity 5 in Figure (5.3.8). Note how the degree

of freedom continues to be exploited by the filter in Figures (5.3.6) and

(5.3.7).

.

To summarize, the filter bank in Figure (5.3.1) is shown to be

capable of tracking the Doppler shift, random center frequency and radial

velocity fluctuations in the presence of either an Observer or a Source
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maneuver. It has been determined that the filter bank can discriminate
between a sudden change in received frequency caused by a sudden maneuver

on the part of either the Source or Observer. For an Observer maneuver,

the estimates adjust themselves to maintain the previously existing relative
positions of the actual values versus the estimated values. For a Source
maneuver, the estimates are adjusted to reflect the new position of the
Source input with respect to the filter mean values.

The preceding results look at the filter's behavior from the point
of view of the individual conditional estimates. Of course, in reality one
does not know between which of the levels the actual Source input lies and
consequently an adaptive technique must be developed before the filter can
hope to be of any practical utility. However, in order to develop this
adaptive technique, the mean value of the Source center frequently must
first be known. The following section discusses how to obtain this in-
formation.

5.4 Determination of the Mean Value of the Source Randomly Varying Center
Center Frequency

The determination of the Source center frequency mean value is of
crucial importance to the problem at hand. Since the VCFs are separated by
less than two Hertz, it is imperative that the method chosen yield a very
accurate value for fo.

The technique consists of using the Adaptive Extended Polar filter
developed in Chapter 3. If the weighted estimate ; produced by this adapt-
ive state estimator is averaged to yield an average value for the steady

state radial velocity, then this information can be used to achieve a very

accurate numerical value for E{fé}. To see how this works, consider

+ . T B _
fm fo[l c] + v
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where p is the averaged steady state radial velocity. Substituting

_ L .

~ 1 R

p==L p
Lo, 1

for 5 and solving for fo we get

o =z (5.4.1)
-9
where it has been assumed in (5.4.1) that v = O where v is the average of
the zero mean frequency measurement noise. This method of obtaining Eo is
very robust, and is illustrated in the next section.

5.5 The Adaptive Doppler Frequency-Radial Channel Tracking Filter for

the Randomly Varying Center Frequency Case

With a method to determine a numerical value Eo for the Source
center frequency mean value now available, the last remaining problem is
the development of the block labeled Adaptive Estimator in Figure (5.3.1)
The key to this new adaptive technique is the implicit assumption that
the mean value of the Sounce random centern jrequency does not change with
time, on very slowly over Long periods of time.
The following analysis presupposes that this mean value has alrzady
been determined by the method presented in Section (5.4.4). Consider the
set of conditional estimates appearing at the output of each Doppler frequency

Kalman filter in Figure (5.3.1). If each of the virtual center frequencies
g (D
%k

is averaged using a sliding window of length L, then the following set of

,y1i=1,2, ..., N

average VCFs is obtained:

L
= T -
£ (1) . 1L fc',(i) , i=1,2, ..., N (5.5.1)
k y=1 Tk-y+l
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where k is the current iteration of the filter bank and L is the sliding
window length. Now because each of these VCFs faithfully reproduces the Q

fluctuations of fé during any averaging period, the average value of fé 3

is bracketed between some pair of (5.5.1). This conclusion is simply a

necessary result of the inequalities if

(L (1)
up < up < up then
| Eo (i) < Eo < %o (1) (5.5.2)
‘ k k

for some set of consecutive integers (i, j) drawn from the set (1, 2, ..., N).

Wich the numerical value E; for the Source meam value fo in
i hand, it is a relatively easy matter to determine the pair (i, j) afrer
: each filter iteration. This information is éhen used to form the fol-

i lowing weighted estimates of the Source ceater frequency, Doppler shift

and Source radial velocity:

3 EWFy L0 ® F L@,
[+} [«} ] Q Q Ok

£ - k e Tk : (5.5.3)
k (fo(i) - fo(J))
k k
L) ;W 3 ) = T W
) Afk (f°k £) -|~Afk (£, f°k )
Afk - = = (f.S.-’;)
| | 8,V - 7 W,
k k
i - - - -— {
i c () 2 W) _ = W) 7oL D ]
f : k (fok o) * oy (5 fokf ) |
. 5, = — — 3.5.5) |
: (D _
’ ('o fo )
k k
84
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Note that f; (j), fé (i), ey 5k(i) are the {nstantaneous estimates produced
k k b
by the filter in Figure (5.3.1) as distinct from the averaged estimates fo (i).
k

etc, Figure (5.5.1) gives a block diagram of this Adaptive Estimator.

To gain a further appreciation of how the Estimator works, let the Source
input initially be bracketed midway between ug 1 and u (i). Next let the
Source input switch to a value very close to up (j). AftZr an initial trans-

- P .
ient, the VCF f; (j). After an initial transient, the VCF f; (1) approaches

k k
in value the actual Source center frequemcy f! . This 4in turn means that the
- K
averaged VCF £ (1) approaches the value Eo
k k

which implies that

£ - %O M Lo

k

and

£ (1) £ P (; (1) -

k k %k )

The result is that the coefficient of Eék(i) in the numerator of
(5.5.3) approaches zero, and the denominator approaches in value the co-
efficient of Eék(j) in the numerator.
Therefore as

then the weighted estimate

PRI ¢ ) SR

%k %k %k
This same conclusion applies to the weighted shift and radial velocity
estimates given in (5.5.4) and (5.5.5), respectively. Note that the Source

input u, was switched close to a mean value merely for illustrative purposes.
12
The Source input can in reality switch anywhere within its continuum of

possible values and the Adaptive Estimator will respond appropriately.
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The results in the next series of figures are obtained using the

scenario in Chapter 3.

The quantities appearing have the values
3 2z, = 400 feet vertical separation
V = 4 ft/sec
o

Vs = 20 ft/sec

a3 aalirio

The filter parameters are the same as section 3.6 and the following additional
parameters have the indicated values:

of = 0.1 Hertz

o}

T, o= 17 secs
o

f = 500 Hertz
o

T

C = white Gaussian random process with a mean
value 4950 ft/sec

Frequency measurement noise standard deviation is the same as before.
The switch in Figure (5.3.2) is closed in order to generate the
noisy frequency measurements using a random velocity of sound in water.
Therefore this situation involving a non-zero vertical separation between the
Observer and Source is a much more realistic scenario which when coupled with
the random center frequency and random velocity of sound in water, collective-
ly provide a realistic environmment in which to test the Adaptive Estimator.

In Figure (5.5.3) the seventh, sixth and fifth VCFs are shown together

with the weighted estimate produced by the Adaptive Estimator. Beginning at

t = 13.5 minutes, the Source velocity changes to VS = 14 ft/sec corresponding

; .
] to ug, = (0.05)(14) = 0.7
t l P
| which is slightly less than ug (6). With the Source input initially midway
! P
k l' between ug (6) and ug (7), the actual center frequency fé is seen to be
" P
bracketed midway between the sixth and seventh VCFs. At t = 13.5 minutes, the

VCFs respond and by t = 15 minutes the sixth VCF has shifted up close to f; .
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To understand the weighted estimate plot, first remember that the

mean value of the Source center frequency must first be determined as in

Section 5.4. This process is taking place in a brief time interval pre-
ceding t - 9 minutes (but not lasting the full 9 minutes). Consequently
during this period the weighted estimate is initialized to the first measure-
ment, like all the initial %é estimates. The quentities in Equation (5.4.1)
have the following computed average values:

?m = 498.396 Hertz

16.134 ft/sec (obtained from averaging
the Augmented Extended Polar filter
estimate)

D>
L}

Substituting these values into (5.4.1), the numerical value

E, = 500.0254 Hertz -
is Eomputed for fo' Note that while there is a slight error in 6 = 16.134--
the actual Source relative radial velocity is 16 ft/sec~~ the computed mean
value of Eo = 500.0254 Hertz is nevertheless extremely accurate. To see how
robust this method is, consider for example if the average radial velocity
estimate produced by the filter of Chapter 3 were 15.0 instead of 16.134;
the computed mean value in this case is

E o= 499.911
which is still quite good. It should be borne in mind that the sonar time

< 1

delay measurements used by the Adaptive Extended Polar Filter to produce 0

are also generated using a random velocity of sound in water. ’

In Figure (5.5.3), the Adaptive Estimator (7.5.3) is activated at

t = 9 minutes with the learning period completed. The weighted estimate fé

k
rises immediately to the actual center frequency and thereafter tracks fé
very closely, even in the presence of the Source maneuver at t = 13.5 minutes.

Note how the weighted estimate is almost identical in value to the actual fé
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after the Source maneuver is completed.

In Figure (5.5.4), the Adaptive Estimator likewise prodices a
weighted estimate of the Doppler shift which is practically identical in
value to the actual Doppler shift. The response time of this weighted
estimate to the Source maneuver at t = 13.5 is relatively brief with only
a minimum transient in the weighted estimate before learning the new Doppler
shift.

The radial velocity weighted estimate é in Figure (5.5.5) displays
all the desirable qualities of the two preceding figures. The response time
to the Source maneuver is excellent. Note how é both before and after the
maneuver is extremely close to the true radial velocity. The vertical scale
in each figure provides a convenient gauge of the accuracy of the weighted
estimates.

The Adaptive Estimator in Figure (5.5.1) can also provide weighted
estimates both of the Source control input ug and Source correlated acceler-

P
ation term wé using the same weighting technique applied to the other state

p
variables. For example, in the above figures the actual Source control inputs
before and after the maneuver are 1.0 and 0.7 respectively. The Adaptive

Estimator produces corresponding weighted estimates having the following range

of values:
Before: 0.988 ~ 1.07

After: 0.64 - 0.81
Note that these radial velocity, control input and correlated acceleration
weighted estimates would be of considerable utility in a combined sonar time
delay-Doppler frequency tracking filter. Such a combinationm would exploit
the best advantages of both filter types. For example, with the Doppler-radial
channel filter providing the above weighted estimates, the order of the time

delay tracker could be reduced by two from that in Chapter 3. This reduction
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in order is possible because the two state variables 5, w; appearing in
(3.2.1) are now estimated by the Doppler tracker. Thus thz state vector for
the time delay tracker would now consist of the following four state
variables:

. , ]T

(o z z w

so so s (5.5.6)

The high quality estimates of 6, w; and ug produced by the Doppler filter
should in turn improve the performaice of tge time delay tracker. In
addition, by embedding the adaptive feature of the combined filter in the
Doppler section, the need for the semi~Markov-based weights would be elimin-
ated. This in turn means that the oscillations in the weighted estimates
experienced in Chapter 3 and which are caused by the weights switching back
and forth would also be eliminated. Note that the simplified time delay
tracker involves much more than a mere reduction in the size of the state
vector. It also implies an elimination of all but one of the mean values
in each channel. For example, the Source input would not be modeied as a
Aingle Gaussian curve in each of the p and Z channels. The mean values of
these curves would be the Doppler provided weighted estimate of the Source
input and zero, respectively. Thus the augmented approach using several
levels could also be dispensed with.

Before concluding this section, the following additional comments
need to be made. If it is known that the Source center frequency is a single
constant tone, the modeling of this center frequency as a narrowband process
is nevertheless advised in order to prevent the error covariance and Gains
from becoming too small and causing divergence. The constant tone could be
accurately modeled as a highly correlated random process by selecting an

appropriately large (small) value for Te (af ).
0 o
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In obtaining the results discussed in this seccion, the pre-

ERY

filtered measurement for the ith Radial Channel Kalman Filter in Figure
(5.3.1) is obtained by subtracting the ith VCF from the received noisy fre-
quency measurement,

o Prefiltered Measrements: (f - E' (i)), i=1,2, ..., N
"+l %kl

An interesting variation on this would be to use the ith virtual Doppler

shift as the prefiltered measurement

a1 =1, 2, ..., 8

This conceivably might improve the filter performance under high measure-

Prefiltered Measurements:

ment noise conditions.

When the learning period is over and Eo has been calculated, a
considerable savings in computation can be achieved by cycling only the two
(i, j) filters where the set (i, j) (was previously defined). When a

maneuver occurs, the entire bank could be activated until the new set (i, j)

has been determined, at which point (N~2) filters could again be deactivated.
Note that detecting Source maneuvers for activating the filter bank is a

relatively simple matter because a Source maneuver is immediately heralded

by a sudden shift in the measured frequency fn as well as in the estimates

produced by the two activated filters.

5.6 Conclusion

This chapter presents possible the first attempt to solve the

problem of passively tracking the radial velocity of a maneuvering Source

using the Doppler effect in the presence of a randomly varying center fre-

quency.

This problem in general is highly nonlinear, particularly if one

is not careful in selecting the polar coordinate system in which to filter.
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An Adaptive Estimator based on the mean values of the virtual center fre-

quencies was developed. This Adaptive Estimator was rigorously tested under
realistic environmental conditions which include a rapidly varying center
frequency and velocity of sound in water modeled as a white Gaussian random
process. The structure of this Adaptive Estimator is made possible by con-
ditioning both the Doppler filter bank and radial channel filter bank
estimates on the individual mean values ug (i), i=1, 2, ..., N.

It is believed that the adaptive 211ter developed in this chapter
represents the first significant attempt to deal with the random center
frequency case in all of its complexities. The results obtained for a
scenario involving a maneuvering Source are very encouraging and it is felt
that the filter merits further study. One feature worth looking at is vary-
ing the window length in the Adaptive Estimator. The window length used here
is L = 8, but a shorter window length might yield a still faster response.

Of course, a shorter window length would also compound the oscillation pro-
blem encountered for large O¢ » SO some tradeoff is called for. These small
o

oscillations could conceivably be eliminated by averaging the output of the

Adaptive Estimator using a window having a length equal to a few correlation

time constants rf .
o)

Another avenue of exploration is to see if some connection exists
between the mean value of the center frequency and the Source dynamics. If
such a relationship actually exists in practice, then proper modeling dictates
that at least an approximate relationship be incorporated into the :ilter.
Note that in this case the degree of freedom is no longer at the disposal of
each filter, and consequently the semi-Markov weights can be used to compute

the weighted estimates,
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- The characteristics of a combined Doppler frequency-sonar time

delay tracking filter are investigated in the next chapter.
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THE INTEGRATED ADAPTIVE DOPPLER FREQUENCY-REDUCED
b ORDER SONAR TIME DELAY TRACKING FILTER

- 6.1 Introduction

- In Chapter 3 the Adaptive Extended Polar Kalman Filter is de-
veloped to process sonar time delays. This filter suffers from large
oscillations in the radial velocity estimates even under high signal-
- to-noise ratios. These oscillations prompted a search for an indepen-
dent method to estimate the Source radial velocity, culminating in the

Adaptive Doppler frequency tracking filter just presented. Since the

Doppler measurements contain no information on the Source radial

position, the Adaptive filter in Chapter 5 can provide estimates only

of the Source radial velocity. Therefore, a hybrid filter formed by

integrating the Adaptive Doppler and sonar time delay tracking filters
- offers the chance to exploit the best features of both filter types.

. Thus, for example, the good radial velocity estimates produced by the

R

1 ) Adaptive Doppler filter can be used by the sonar time delay filter to

? produce improved estimates of both the Source radial position and

3 | Source vertical separation. To combine the two estimators the standard
N level Adaptive time delay filter is initially run. Then 3 is smoothed,
3 - and used to compute Eo in the Doppler filter. Once this period of

| initialization is over the standard N level filter is replaced by the
i .. R

reduced order state variable model where now N = 1 and ug is available. l
. P
| The time delay filter is derived in the next section.
}
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6.2 State Variable Model for the Reduced Order Sonar Time Delay
Tracking Filter

The Adaptive Doppler tracking filter developed in Chapter 5 provides
estimates of the following quantities from the noisy frequency measure-

ments fm:

(6.2.1)

Therefore the reduced order state variable vector for the sonar time

delay tracker previously given is repeated here for convenience.

[ P zSO

Returning to the state model (3.2.1) for the time delay tracking fil-
ter, the following state equations are obtained (the subscript s, on

z is dropped for convenience):
o

+ (A-T)(V, CosB_) + Dw_ (6.2.2)

Prel = P T Ao B
k °k

S
Px

Ze41 T F ARt B"’éz s (6.2.3)
K

= Ez

L
" + Fw s + Aus

241

Since the quantities appearing in (6.2.1) are estimated by the Doppler

tracking filter, they can be considered as "deterministic inputs' for

B e e T e S TR
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the reduced order sonar time delay filter. Combining these quantities
with the deterministic inputs of (3.2.1) the following expanded deter-

ministic input vector is obtained:

i -

V° CosBso (6.2.6)

Using this expanded input vector, the state variable model (6.2.7) (next page)
emerges from the state equations (6.2.2) - (6.2.5). The corresponding

linearized measurement matrix H is given in Equation 6.2.8).

. _ -
arl arl
e 3z 0 0
P 30
H - (6-2-8) .1
i
312 312 ]
33~ 3z 0 0 ;
L so :

where the partial derivatives

311 arz 4 i
— [} L N ] L] b
dp azso ;

are defined in Equations (3.3.5).
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Note that in the vector (6.2.6), ;s is no longer one of the

(1) P
» 1 =1, 2, ..., N but rather is the

preselected mean values ug

p
weighted estimate of the Source input produced by the Adaptive Doppler

tracking filter. In addition, and for the reasons given in Section 3.2,

the input ug has the constant value
z
u =0,

-]
z

Thus neither the vector (6.2.6) not the state model (6.2.7) is condi-
tioned on i, and consequently only a 4{ngfe Extended Kalman filter rather
than a bank of N such filters need be executed to process the noisy time
delay measurements le Qnd sz, after the initialization or learning

period is over.

6.3 Performance Analysis of the Integrated Adaptive Doppler Frequency-
Reduced Order Sonar Time Delay Tracking Filter

Figure 6.3.1 gives a block diagram of the integrated Adaptive
Doppler frequency-reduced order sonar time delay tracking filter. 1In
this figure, the weighted estimates (6.2.1) produced by the Adaptive
Doppler filter are fed to the reduced order sonar time delay filter
where they are used in processing the noisy time delay measurements

z and z .
"1 T2

The results presented in the remainder of this chapter consist
of side by side comparisons between the integrated Adaptive Doppler fre-
quency-reduced order sonar time delay filter (hereafter referred to as

the hybrid filter) and the pure time delay Adaptive Extended Polar filter

developed in Chapter 3. These results take the form of a series of graphs,

each graph containing superimposed plots of the correcponding estimates
produced by the two different filters. Thus, a very effective comparison

can be made.
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Figures 6.3.2 - 6.3.4 are obtained using the filter parameters

of Chapter 3, zg, = 400 feet, Vo = 4 ft/sec, Vs = 20 ft/sec, bc = 3 ft/sec

us.p =1.0, bfo £,

random velocity of sound in water is used to genmerate both the noisy

= ,lhz, T = 17 sec and f, = 500 hz, In addition, the
frequency and time delay measurement data., It should also be pointed out
that the time t = O in these figures corresponds to the instant when the
learning period of the Adaptive Doppler frequency tracking filter has
just been completed.

In Figure 6.3.2 the percent error in Source radial position p
produced by the pure time delay filter is larger by several orders of
magnitude than that produced by the hybrid filter. Indeed, whereas the
hybrid filter's errors are well within *1% of the true value, the errors
produced by the other filter are larger than 4% for values of t > 15
minutes.

In Figure 6.3.3 the estimates of the Source radial velocity pro-
duced by the hybrid filter are far superior to those produced by the
pure time delay filter. While the hybrid estimates are generally within
+1.5 ft/sec of the actual value (16 ft/sec), the other filter's estimates
are in error by as much as +5 ft/sec. Note that with the adaptive fea-
ture embedded in the Doppler tracker, the hybrid filter estimates are
much smoother than the wildly oscillating estimates of the pure time
delay tracker, which are caused by the switching of the semi-Markov
weights.

The superior performance of the hybrid filter is again evident
in Figure 6.3.4 where its estimates of the Source vertical position are

always within 30 feet of the actual value (400 feet). Since this error
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of 30 feet is comparable to the physical height of a submarine, the
error is entirely acceptable. Contrasting with this small error are
the relatively large errors produced by the pure time delay filter,
which for values of t > 15 minutes are in excess of 100 feet.

Note how in Figures 6.3.2 and 6.3.4 (and to a lesser extent in
Figure 6.3.3) the estimates provided by the pure time delay filter are
progressively getting poorer and poorer. For example, as time increases,
the amplitude with which these estimates oscillate is getting steadily
larger; near t = 0, the estimates are relatively close to the true values
1; but with each iteration the estimates diverge more and more. The under-~
‘ lying cause of this divergence is that the signal-to-noise ratio on 3

is rapidly deteriorating to the point where the ngisy Tl measurements,

z ., are virtually useless. For example, over the period f =0 tot=
1

25 minutes, T decreases from an initial value of 18 m.sec to a final
{ value of 6 m.sec. With additive white Gaussian measurement noise having
a 5 m.sec standard deviation, an initially marginal quality for T
rapidly deteriorates to the point where the additive measurement noise
is of the order of the quantity being measured. The following specific
examples taken from the computer simulations used to produce Figures

6.3.2 - 6.3.4 serve to illustrate this point.

3 T (Actual Value in m.sec) z_ (Measured Value in m.sec)
“ l
1 16.3 23.3
! 13.7 19.6
10.7 16.6
7.0 0.1

The hybrid filter, on the other hand, performs remarkaply well when con-

fronted with these same measurements. The progressive deterioration in
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the quality of the estimates encountered with the pure time delay filter
is noticeably absent from the hybrid filter's estimates. In fact, the
high qualicy of the estimates produced by the hybrid filter at the be-
ginning of these plots when the z, measurements are of marginal qualircy,

1

is maintained throughout the remainder of the plots even when z, becomes
1

virtually useless.

The reason for the superior performance of the hybrid filter is
obvious; the high quality of the estimates (6.2.1) produced by the Adap-
tive Doppler tracking filter (which is immune to the debilitating effects
of poor quality SNR on the time delay measurement data) is sufficient to
arrest the deterioration caused by the decreasing SNR on T Thus the
inicial high qualicy of the estimates produced by the reduced order
sonar time delay filter is maintained throughout the entire time period.

A factor which aids both filters in the above tests is the
high SNR of the T, measurements. The ocean depth of 6000' produces
values of T, in the range 721 m.sec - 286 m.sec.

In the next series of tests the ocean depth is reduced to 3000’
with all initial conditions and {ilter parameters remaining unchanged.
This reduction in the depth of the ocean reduces the values of Y
to one-fifth of their previous values. The values of T, remain
the same as before. Thus, coupled with an already very low SNR on Tl
is a realtively low SNR on 12. In addition, the Source executes
a maneuver which causes its radial velocity (with respect to the moving
Observer) to change from an initial 16 ft/sec to a final 10 ft/sec.

These conditions collectively provide a much more rigorous test of

both filters.
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The effect of the very low SNR on t, in addition to that on <t

2
is immediately evident from Figure 6.3.5 and its continuation Figure

1

6.3.6 where the percent error produced by the pure time delay filter is
from three to five times greater than the corresponding values in Fig-
ure 6.3.2. These large percent errors (13% - 257%) stand in marked con-
trast to the very small percent error (0% - 3%) produced by the hybrid
filter when presented with the same measurement data.

In Figures 6.3.7 and 6.3.8 the hybrid filter's estimates of the
Source radial velocity which are generally within =1 ft/sec of the true
value are far superior to the highly oscillatory estimates produced by
the pure time delay filter. The hybrid filter also responds much more
rapidly to the Source maneuver at t = 4 minutes. Tor example, by t = 6
minuces, its astimates have converged to the new value of the Source
radial velocity whereas the other filter exhibits a very sluggish re-
sponse which lasts until t = 12.5 minutes. Thus the response time of
the hybrid filter is one-fourth that of cthe pure time delay filter.
This fast response by the hybrid filcer is a direct result of embedding
its adaptive feature in the Doppler frequency filcter.

The estimates of the Source vertical position produced by :the

hybrid filter in Figures 6.3.9 and 6.3.10 continue to be generally

within 30 feet of the true value. This error is entirely acceptable for
the reasons stated earlier. The estimates produced by the pure time
delay filter, on the other hand, are in error by several hundred feet
for values of t > 17 minutes.

The progressive deterioration of the pure time delay estimates,

originally encountered in Figures 6.3.2 - 6.3.4, 1s even more pronounced

in Figures 6.3.5 - 6.3.10. The reason for this, of course, is that in
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addition to a very low SNR on T1» the SNR on T, is much lower in the
latter set of figures than is the case in Figures 6.3.2 - 6.3.4. The
immunity to these low SNR ratios which the Adaptive Doppler frequency
filter enjoys is what enables the hybrid filter to maintain its consisf
tently superior performance in both series of tests.

These high quality estimates of both the Source radial and ver-
tical positions produced by the hybrid filter under very low SNR on T
and Ty tend to obscure the fact that the reduced order sonar time delay
filter, like the pure time delay filter, is also an Extended Kalman fil-
ter. It is well known that the Extended Kalman filter algorithm dis-
plays large errors and biases under low signal-to-noise ratios.
This fact makes the performance of the hybrid filter in this chapter
all the more remarkable. In Figures 6.3.5, 6.3.6, 6.3.9 and 6.3.10,
with a low SNR on T, and an SNR on 2 which makes le virtually use-
less most of the time, the estimates produced by the reduced order sonar
time delay filter show a relatively small degradation compared to that
suffered by the pure time delay filter. In addition, this good per-

formance by the reduced order filter is maintained in the presence of

an abrupt Source maneuver.

6.4 Conclusion

In this chapter an integrated Adaptive Doppler frequency-
reduced order sonar time delay tracking filter is developed by com-
bining the filters developed in Chapters 3 and 5. This hybrid filter
exploits the best features of both constituent filters by using the
high quality estimates of the Source radial velocity and control input

provided by the Adaptive Doppler frequency filter to improve the
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estimates of the Source radial and vertical position produced by the

pure time delay filter. For example the immunity to sonar time delay
measurement noise which the Adaptive Doppler frequency filter enjoys, F

has carried over to the reduced order sonar time'delay filter. Under

low SNR conditions on both time delays, the large errors in the es-
timates of the Source radial and vertical positions produced by the
pure time delay filter of Chapter 3 are noticeably absent with the
reduced order filter. In addition, the hybrid filter's response time
to a maneuver by the Source is found to be one-fourth that of the pure
time delay filter.

The parameter values used in this study of the hybrid filter
may not be such as to yield optimal filter performance; therefore, any
further investigation of this filter's characteristics should include
a seusitivity analysis of these various parameters. Such an analysis

might well yield a more "optimal" set than the one used here.

SUMMARY

Modeling of the target control input as a series of partially
overlapping Gaussian curves worked well against air targets in the past,
it was decided to apply this technique to the problem of passively
tracking an underwater maneuvering Source from a moving Observer. 1In
order to do this, it was necessary to carefully evaluate the benefits
that the various cuvordinate systems have to offer given the generally
higher nonlinear types of measurement data available for passive
tracking. When polar coordinates were chosen as the most suitable

coordinate system, a linearized polar model for the maneuvering Observer-
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Source scenario was developed which solved the difficult problem of
compensating for the Observer's own motion. This choice of polar co-
ordinates represents a significant departure from the existing trends
in the literature which generally show an unquestioned preference for
rectangular coordinates. Indeed, one of the major contributions of
this report is to show that for the small added complexity needed to
compensate for Observer motion in polar coordinates, considerable fil-
ter simplification can be bought in the processing of all the types of
available data--sonar time delays, bearing, and Source-emitted fre-
quency spectra. With rectangular coordinates, on the other hand, where
compensation for Observer motion is extremely éimple, the filter is
generally more complex than in the polar case. It is shown, for ex-
ample, that in processing sonar time delays the linearized measurement
matrix using rectangular coordinates is at least one order higher than
that needed with polar coordinates.

Using partially overlapping Gaussian curves to model the Source
control input and with measurement data consisting of both surface and
bottom reflected sonar time delays, the estimates of the Source radial
velocity produced by the polar filter were found to exhibit some os~
cillations even under high measurement SNR conditionms.

As a result of these oscillations, a new technique using the

Doppler effect was developed whereby high quality radial velocity esti-

mates are obtained from the frequency spectra emitted by the Source.
The processing of these spectra, which are either unknown constant fones
o narnvwowband random processes, is a highly nonlinear estimation problem,

which when implemented on the polar filter became linear and time varying.
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Another important result of this report was to show how high quality
information about the Source radial velocity and control imput can be
obtained from these unknown spectra using tl.e Doppler effect. In
addition, and in spite of the nonlinearity of these noisy frequency
measufements, the information was obtained using only linear estimation
techniques.

Next, an integrated filter was developed by combining the
Doppler frequency filter with a reduced order sonar time delay filter.
The estimates produced by this integrated filter are generally superior
to those produced by the pure time delay filter. This superior per-

formance was maintained under low SNR on both sonar time delays and

represents a major contribution.
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